The contribution of a road pavement to the overall road formation is shown in Figure 2.1. The pavement must serve two basic functions, it must perform as an engineering structure and at the same time meet functional requirements. In terms of structural performance, the pavement must be of sufficient thickness, and be composed of materials of sufficient quality, to be able to withstand the various loads that are applied to it by heavy vehicles. In terms of functional performance, the pavement must have a good riding quality to ensure comfortable travel for the road user and, in the case of surfaced pavements, a surface having adequate drainage, skid resistance, reflectivity and line markings to ensure safe travel. The surface must also be capable of resisting both vertical and horizontal surface stresses to maintain its integrity.
If the surface is lost, or cracked, then ride comfort is affected and water can enter the underlying base layers. It must also be capable of withstanding environmental loads, including oxidation of bituminous binders. Inherent in these demands is the need to ensure that construction and maintenance practices are adequate for the demand to be placed upon the pavement. Australia has about 800,000 km of roads, of which about two-thirds are unsealed (Austroads 2000).
Pavements are classified as either flexible (containing unbound granular and/or stabilised materials and/or asphalt) or rigid (concrete pavement with joints and/or steel reinforcement). The term “flexible pavement” is applied to all pavement structures other than those described as rigid pavements, including unbound pavements with thin bituminous surfacing, and bound (stabilised and asphalt) pavements. They are designed and generally constructed as continua, without formal joints.
The most common sealed flexible pavement used in Australasia is the unbound granular pavement with a thin bituminous seal. Their design is empirically based. The design of pavements incorporating a bound layer, or full depth asphalt pavement, is mechanistic using elastic layer modelling. This relies on the stiffness (modulus) properties of continuous layers, in a macro sense appropriate to potentially cracked media, rather than material properties measured in the laboratory.
A rigid pavement consists of a relatively high strength concrete base (usually 30 MPa or more) and one of a range of subbase materials (lean mix concrete, cement stabilised crushed rock, unbound granular material, etc.). The various concrete base formats are jointed unreinforced (plain concrete), jointed reinforced, continuously reinforced, and steel fibre reinforced. With the exception, perhaps, of roller compacted concrete, rigid pavements have formal jointing systems that are sealed against moisture.
The primary function of the surface course is to withstand the prevailing loading and environmental (moisture, dust, etc.) effects and hence provide a safe and functional riding surface with reduced spray and noise while at the same time protecting the underlying pavement courses from moisture ingress. The three types of surface courses most commonly used on roads in Australasia are sprayed (or chip) seals, asphalt and concrete.
The base is the main load carrying course within the pavement. An unbound basecourse is composed of materials which are granular or mechanically stabilised or treated with binders to improve properties other than strength (e.g., plasticity).
The subbase in a flexible pavement is also a load carrying course; its lower quality is related to economics and the lower stress levels than those near the pavement surface. The main role of the subbase is to provide adequate support to the base and reduce the stress/strains applied to the subgrade.
The subgrade is the trimmed or prepared portion of the formation on which the pavement is constructed. The subgrade may be the prepared in situ material but, particularly for heavy duty pavements, it may also include selected materials which are placed above the in-situ material.
The basic function of a pavement is to support the applied traffic loading within acceptable limits of riding quality and deterioration over its design life. To do this, the pavement structure must spread the concentrated wheel loads to the foundation (subgrade material) such that, under peak and accumulated (e.g. fatigue) traffic loads:
As mentioned earlier, the load-spreading effect of unbound granular materials is essentially through inter-particle friction and shear strength, which depend on the presence of horizontal confining stresses. On the other hand, bound layers tend to spread the load through slab action, as significant horizontal tensile stresses can be sustained at the bottom of the layer.
Whether you’re working on basements, foundations or infrastructure projects, our team delivers solutions to suit your site conditions. With BHM Geotechnical, you can break new ground with confidence.Get in touch with our Sydney, Australia office to start planning your next Project!
Have a question or need more information? Fill out the form below, and our expert team will get back to you as soon as possible to assist with your geotechnical needs.